燃料油主要用途是什么?
燃料油广泛用于船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。根据用途,燃料油可以分为船用燃料油和炉用燃料油及其他燃料油。根据国家统计局统计,我国燃料油消费主要集中在发电、交通运输、冶金、化工、轻工等行业。
1 、燃料油与其他油品的关系如何?
一般来说,在原油的加工过程中,较轻的组分总是最先被分离出来,燃料油( Fuel Oil )作为成品油的一种,是石油加工过程中在汽、煤、柴油之后从原油中分离出来的较重的剩余产物。
2 、燃料油的品种特性如何?
燃料油主要由石油的裂化残渣油和直馏残渣油制成,其特点是粘度大,含非烃化合物、胶质、沥青质多。
什么是燃料油(Fuel Oil)
船用锅炉配件="WORD-BREAK: break-all; LINE-HEIGHT: 150%">燃料油在不同的地区却有不同的解释。
欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的掺合物,主要用作蒸汽锅炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。
但在美国则指任何闪点不低于37.8℃(100oF)的可燃烧的液态或可液化的石油产品。它既可以是残渣燃料油(Residual Fuel Oil,亦称Heavy Fuel Oil),也可是馏分燃料油(Distillate Fuel Oil),后者包括煤油(Kerosine)和民用取暖油(Domestic Heating Oil)。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程,如裂化等再经蒸馏得到。
按ASTM(American Society for Testing and Materials美国材料试验协会)的规定,燃料油分为六级,其中No.1属煤油型燃油,No.2为民用取暖油,相当于柴油馏分,这两级均属馏分燃料油,以沸程分级,No.5及No.6则为残渣燃料油,主要用作工业、发电、锅炉及船用燃料,以粘度分级。No.5又有轻、重之分,前者38℃之运动粘度不超过65厘沲(cSt)后者50℃时不超过18厘沲(cSt)(相当于100oF之雷氏粘度600秒),主要用作工业燃料。 No.6,50℃运动粘度大于92厘沲(cSt),小于638厘沲(cSt),主要用作轮船及发电厂等燃料。至于No.4实为No.5或No.6与No.2或No.1的调合油,基本属重柴油级燃料。No.3燃料油1948年取消,需要时一般以No.2顶替。
而日本标准JIS K2205燃料油分为三类AFO、BFO及CFO。
燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity),硫含量(Sulfur Content),倾点(Pour Point)等。供发电厂等使用的燃料油还对钒(Vanadium)、钠(Sodium)含量作有规定。
对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。
燃料油的品质标准
1、 燃料油品质中密度、粘度、倾点、闪点、硫份、杂质、残碳是重要的参数指标。
2、 在国际标准中,高、中、低硫是以硫份1以下是低硫;硫份1-2是中硫;硫份2以上为高硫划分标准的。
3、 硫份过高会产生燃料油产生硫份物,具有强烈的腐蚀性及大气污染,影响环保的后果
4、 在国际准标中硫份最高应不超过3.5
5、密度越小,燃料油中轻油成分越多,热质越高燃料油品质标准中密度越小越好
6、 在国际标准中,密度不应超过0.991
7、 燃料油中主要有钢、铝、钠金属成份?
8、 金属含量过高有燃烧后产生金属化合物腐蚀设备的坏处。
9、以粘度来划分是180#、380#的划分标准,具体参数是180#燃料油贴度不越过180;380#燃料油粘度不越过380。
10、 请列出一份比较好的指标?
密度0.96以下√
金属含量总计 100以下
粘度 170以下√
水份0.1以下
残碳 10以下
杂质0.01
闪点 100以上
灰份 0.1
硫份 3以下√
燃料油的分类
燃料油作为炼油工艺过程中的最后一种产品,产品质量控制有着较强的特殊性。最终燃料油产品形成受到原有品种、加工工艺、加工深度等多种因素的制约。根据不同的标准,燃料油可进行一下分类:
A .根据出厂时是否形成商品量,燃料油可以分为商品燃料油和自用燃料油。商品燃料油指在出厂环节形成商品的燃料油;自用燃料油指用于炼厂生产的原料或燃料而未在出厂环节形成商品的燃料油。
B .根据加工工艺流程,燃料油可以分为常压重油、减压重油、催化重油和混合重油。常压重油指炼厂常压装置分馏出来的重油;减压重油指炼厂减压装置分馏出来的重油;催化重油指炼厂催化、裂化装置分馏出来的重油(俗称油浆);混合重油一般指减压重油和催化重油的混合。
C .根据用途,燃料油可分为船用燃料油和炉用燃料油(重油)及其他燃料油。
燃料油的自然属性
燃料油是成品油的一种,主要由石油的裂化残渣油和直馏残渣油制成,其特点是粘度大,含非烃化合物、胶质、沥青质多。燃料油的主要技术指标有粘度、含硫量、闪点、水、灰分和机械杂质。
A .粘度:粘度是燃料油最主要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。目前国内较常用的是 40 ℃运动粘度(馏分型燃料油)和 100 ℃运动粘度(残渣型燃料油)。我国过去的燃料油行业标准用恩氏粘度( 80 ℃、 100 ℃)作为质量控制指标,用 80 ℃运动粘度来划分牌号。油品运动粘度是油品的动力粘度和密度的比值。运动粘度的单位是 Stokes ,即斯托克斯,简称斯。当流体的运动粘度为 1 泊,密度为 1g/ 立方厘米的运动粘度为 1 斯托克斯。 CST 是 Centistokes 的缩写,意思是厘斯,即 1 斯托克斯的百分之一。
B .含硫量:燃料油中的含硫量过高会引起金属设备腐蚀和环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫和低硫燃料油。
C .闪点:是涉及使用安全的指标,闪点过低会带来着火的隐患。
D .水分:水分的存在会影响燃料油的凝点,随着含水量的增加,燃料油的凝点逐渐上升。此外,水分还会影响燃料机械的燃烧性能,可能会造成炉膛熄火、停炉等事故 .
E .灰分:灰分是燃烧后剩余不能燃烧的部分,特别是催化裂化循环油和油浆渗入燃料油后,硅铝催化剂粉末会使泵、阀磨损加速。另外,灰分还会覆盖在锅炉受热面上,使传热性变坏。
F .机械杂质:机械杂质会堵赛过滤网,造成抽油泵磨损和喷油嘴堵塞,影响正常燃烧。
燃料油各项数据指标含义
对于燃料油,我们经常会见到诸如180cSt、380cSt这样的分类。这里我们对所有油品经常会用到的各项指标做简单的介绍。
cSt为Centistoke(厘沲)的缩写,cSt是运动粘度(Kinemetic Viscosity)单位“沲”(Stoke)的百分之一,简写cSt。
粘度(VISCOSITY)是油品流动性的一种表征,它反映了液体分子在运动过程中相互作用的强弱,作用强(粘度大),流动难。石蜡基型原油含烷烃成份较多,分子间力的作用相对较小,粘度较低,环烷基原油含脂环、芳香烃较多,粘度一般较大。但需注意的是油品的流动性并非单决定于粘度,它还与油品的倾点(或凝点)有关。
流体的粘度明显受环境温度的影响(压力也有一定影响,但一般可忽略不计),这种影响也是通过分子间的相互作用来实施的:通常的概念是温度升高流体体积膨胀,分子间距离拉远,相互作用减弱,粘度下降;温度降低,流体体积缩小,分子间距离缩短,相互作用加强,粘度上升。由于粘度与温度关系密切,因此任何粘度数据都需注明测定时的温度。通常在低温区域温度对粘度的效应尤其显著。
粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。
粘度对于各种油品都是一重要参数。内燃机及喷气发动机燃料的汽化性能、锅炉用燃料雾化的好坏均直接与各油品的粘度相关,而油品的输送性能亦与粘度有密切关系。由于粘度在油品实际应用中表现出的重要性,因此不少油品,诸如残渣燃料油、某些润滑油等往往以粘度作为其分级的依据。此外通过对使用过程中的润滑油的粘度的测定更可提供该油品是否已经变质而需加以更换的信息。
运动粘度(KINEMETIC VICOSITY)υ是油品的动力粘度(Dynamic Viscosity)η与同温度下的油品密度ρ之比:
υ=η/ρ
单位,沲(Stoke)= 厘米2/秒,通常以其百分之一 ——厘沲cSt表示。
具体是测定一定量的试样在规定的温度下(如40℃,50℃)流过运动粘度计之毛细管所需要的时间“秒”,然后乘以该粘度计之标定常数即得该试样粘度cSt。
运动粘度的优点是样品用量小,测试速度快,更主要是准确度大大高于其它测定法(雷氏、赛氏等),因此应用日趋普遍。
动力粘度是面积各为1厘米2并相距1厘米的两层液体,当其中一层以1厘米/秒的速度与另一层液体作相对运动时所产生的内摩擦力,单位“泊”(Poise),其百分之一即厘泊(CP)。
赛氏粘度(SAYBOLT VISCOSITY)是一定量的试样,在规定温度(如100OF,122 OF或210 OF)下,从赛氏粘度计流出的60毫升所需要的时间,单位秒。
赛氏粘度有赛氏通用粘度(Saybolt Universal ,常用SSU表示)及赛氏重油粘度(Saybolt Furol ,常用SSF表示)之分,两种粘度计的差别主要在于试样流出孔的口径上,赛氏通用粘度计之孔口径较小,重油粘度计较大。一般当以赛氏通用粘度计测得之流出时间超过2000秒时,则改用赛氏重油粘度计。数值上SSF约等于SSU的十倍。
赛氏粘度在美国等地被广泛采用。雷氏粘度(REDWOOD VISCOSITY)是一定量的试样在规定温度(100OF)下,从雷氏粘度计流出50毫升所需要的时间,单位(秒)。雷氏粘度分雷氏1号,Redwood No.1(简写RWⅠ)及雷氏2号,Redwood NO.2 (简写RWⅡ)。当测得的RWⅠ超过2000秒时,改用RWⅡ测定。数值上RWⅡ等于RWⅠ的10倍。
雷氏粘度在英国被广泛应用,由于规定之准确度较差,已逐步被运动粘度(Kinemetic Viscosity)所取代。
密度(DENSITY)为油品的质量(Mass)与其体积的比值。常用单位——克/厘米3、、千克/米3或公吨/米3等。由于体积随温度的变化而变化,故密度不能脱离温度而独立存在。为便于比较,西方规定以15℃下之密度作为石油的标准密度
闪点(FLASH POINT)是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温度即定义为其闪点。其特点是火焰一闪即灭,达到闪点温度的油品尚未能提供足够的可燃蒸汽以维持持续的燃烧,仅当其再行受热而达到另一更高的温度时,一旦与火源相遇方构成持续燃烧,此时的温度称燃点或着火点(Fire Point或Ignition Point)。
虽然如此,但闪点已足以表征一油品着火燃烧的危险程度,习惯上也正是根据闪点对危险品进行分级。显然闪点愈低愈危险,愈高愈安全。通常愈是轻质的油品闪点愈低,反之愈高。只要条件许可,一切操作均宜在低于闪点的温度下进行,但并非所有油品均能满足这一要求,汽油与石油气之所以特别危险,因前者之闪点一般在零下三、四十度,而石油气更远低于汽油,因此常温下即是远高于它们闪点的条件下操作。另外,值得注意的是原油,因它包括各轻质组分,闪点一般较低。
在油品的使用过程中,闪点也有重要意义,譬如,若发现内燃机油闪点有显著下降,说明该润滑油已受燃料的稀释,而需及时处理更换等等。
闪点的标准测定法很多,不同的方法适应不同的要求,通常可粗分为两类——闭口杯法(Closed Cup)及开口杯法(Open Cup),前者主要用于测定轻质油品的闪点,后者多用于重质油品,但是闭口杯法仅能测闪点,而开口杯法除闪点外尚可测定着火点。同一样品由不同方法测得的闪点会有差别,譬如由ABLE法测得的数据可比TAG法低2~3℃。
倾点(POUR POINT),一油品尚能流动的最低温度称为倾点。单位为℃或oF。随着外界温度的下降,油品的流动变得愈来愈困难,最终甚至于“丧失”流动性。对于石油而言,其低温下的流动性通常同时取决于两个因素:一是粘度随温度下降而增高,一是油品中原来呈溶解状态的石蜡分子因温度下降而以固体结晶析出。但对于环烷基型的石油,其低温下流动性的“丧失”主要决定于前一因素。平时所谓的倾点多指因蜡质析出而刚要使油品“丧失”流动性的那个温度,因此又称为“含蜡倾点(Waxy Pour Point)”。
倾点愈高自然低温下的流动性愈差。但是由实验室小样测得的倾点数据并不能真正代表如储油罐中大量油品的实际倾点,事实上后者要低得多。而且对于石蜡基型石油只要以机械的方法破坏了蜡的结晶结构,即使在低于倾点的某一段温度范围内仍可顺利流动。为改善油品的低温流动性,尚可添加适量倾点下降剂(Pour Point Depressants)。
至于环烷基型石油的倾点,在概念上与“含蜡倾点”不同,有人特称之为“粘度倾点(Viscosity Pour Point)”,这种油品不能通过机械的作用获得低于倾点的流动性。由于倾点是油品低温流动性的一种指示,因此在油品输送上有着实际的重要意义。
残炭(CARBON RESIDUE)是残渣燃料油(Residual Fuel Oil)及柴油燃料油润滑油等规格指标之一。是指一定量的油品试样在无空气补充的条件下受热,油品经高温分解、聚合及焦化后所留下的不挥发残渣,其重量占试样重量的比值称为该油品的残炭量,以重量百分数(wt%)表示。
由上述定义可知,所谓残炭除真正的碳质成份外实质上尚包括有灰份(Ash),故加有添加剂或灰份含量较多的油品(尤其是润滑油)所得残炭量一般均偏高。
油品的组成对残炭量有直接影响,一般石蜡基型石油残炭量较低,环烷基型石油则较高,直馏油品残炭量低,裂化油品高,轻质油品如汽油、煤油等几乎测不出残炭,而重质油品如残渣燃料油,残炭量可高达10%乃至15%。
一般多以所用之试样总量为基础计算残炭量,但轻柴油等较轻质油品所含残炭较少,因此亦常先进行试样的蒸馏,待蒸去90%后,对留下的10%蒸余物进行残炭测试,结果则报为基于10%蒸余物之残炭(Carbon Residue On 10% Residum)。
从一油品所含的残炭量大致可推断该油品在使用过程中产生结炭(焦)的倾向,但这关系并不是绝对的;此外该值亦可作为柴油、润滑油之基础油等精制程度的一种间接指标。
目前通用的残炭测试法有两种:一为康氏法(Conradson Carbon Test),另一为后期发展起来的兰氏法(Ramsbottom Carbom Test)。目前不少规格仍以康氏测定的结果为指标,但兰氏法测得之数据较准确。